Idean un motor que reduce el impacto ambiental de los camiones de mercancías

Investigadores de la UPV han logrado un motor que se adelanta a la exigente normativa anticontaminación aprobada para 2025.

0
167
Compártelo en las redes
Share on Facebook
Facebook
Tweet about this on Twitter
Twitter

Redacción. Un equipo de investigadores del Instituto CMT-Motores Térmicos de la Universitat Politécnica de València (UPV) ha ideado un nuevo motor que reduce el impacto medioambiental de los camiones de mercancías que más circulan por las carreteras europeas, los que pesan entre 18 y 25 toneladas.

Desde sus laboratorios, los investigadores proponen una nueva configuración que conjuga beneficios de los híbridos y la combustión dual-fuel (diesel-gasolina), y los resultados de las primeras pruebas teórico-experimentales, recientemente publicados en la revista Energy Conversion and Management, son concluyentes: en comparación con el diésel, la tecnología propuesta por los investigadores del CMT-Motores Térmicos UPV reduce los niveles de óxido de nitrógeno (NOx) y hollín un 92% y un 88%, respectivamente, y las emisiones de dióxido de carbono (CO2) en el escape un 15% -hasta los 52 g/tkm (gramo por tonelada y kilometro)-, adelantándose así a la exigente normativa anticontaminación aprobada para 2025.

Resultados muy positivos

Antonio García, profesor titular de universidad e investigador en CMT-Motores Térmicos, afirma que el objetivo del trabajo “era evaluar el potencial técnico-económico de la tecnología híbrida paralelo aplicada junto a la tecnología dual-fuel como alternativa a la electrificación pura para conseguir la drástica reducción de las emisiones de CO2 necesaria para 2025, ya que, en cinco años, estos camiones deben emitir un 15% menos de dióxido de carbono. Y las cifras que hemos obtenido, tanto de dióxido de carbono como de otros de los contaminantes más nocivos de los motores de combustión, han sido más que positivos”.

Máxima eficiencia, menor contaminación

La conjunción de ambas tecnologías, combustión dual-fuel y arquitectura híbrida, permite maximizar los beneficios de cada una de ellas. “La asistencia eléctrica”, señala García, “evita el uso del motor térmico en condiciones de baja eficiencia. A su vez, la inclusión del motor térmico en el sistema completo permite obtener vehículos económicamente viables en comparación a los puramente eléctricos, y relativamente limpios”.

En este sentido, el investigador del CMT-Motores Térmicos UPV incide en que la tecnología de combustión dual-fuel híbrida paralelo permite reducir más del 90% las emisiones de NOx respecto a la operación diésel, con niveles de hollín casi nulos. Por otra parte, la optimización de los componentes eléctricos permite operar al motor térmico en las zonas de mayor rendimiento, con un consumo de combustible un 13% menor que el vehículo diésel convencional.

“Además de esta propuesta de nuevo motor”, añade, “estamos trabajando en el uso de combustibles alternativos, como son los e-fuels, para maximizar el beneficio de esta tecnología en términos de análisis de ciclo de vida del CO2, anticipándonos así a posibles cambios en la futura normativa”.

Simulación numérica

Por otro lado, Santiago Martínez, investigador también del CMT-Motores Térmicos UPV, destaca la importancia de las simulaciones por ordenador en el trabajo de dimensionado de los distintos componentes eléctricos para ser empleados en la arquitectura híbrida paralelo junto al sistema de combustión dual-fuel. En este aspecto, la simulación numérica ha sido uno de los pilares para la consecución de los resultados del estudio en un periodo de tiempo relativamente corto.

“Para este trabajo”, indica Martínez, “se ha desarrollado un modelo virtual del vehículo original, con funcionamiento diésel convencional, y se ha validado haciendo uso de datos experimentales obtenidos en el propio camión por la empresa Volvo. Tras ello, llevamos a cabo la optimización de los diferentes componentes eléctricos, es decir, motor, generador y batería, teniendo en cuenta ciclos de conducción reales en los que el camión desarrollaría su actividad. Esta metodología permite reducir muchísimo la cantidad de ensayos experimentales, y por lo tanto, el coste de desarrollo de una determinada tecnología”.

La producción a gran escala de camiones eléctricos deberá esperar

Finalmente, Javier Monsalve, otro de los miembros del equipo del CMT-Motores Térmicos UPV, explica que, para determinar el potencial de esta tecnología con respecto a la actual, es necesario evaluar su coste teniendo en cuenta dos factores principales: el precio de las baterías y el posible ahorro en términos de penalización por exceso de emisiones de CO2.

En este sentido, los investigadores han tenido en cuenta en su análisis tanto el precio actual de las baterías (~176 €/kWh), como su previsión para 2025 (~100 €/kWh), además de la penalización económica aplicada a los fabricantes de camiones en caso de no cumplir con el límite de CO2 en 2025, que será de 4250 € por g/tkm.

Analizando lo anterior, Monsalve concluye que la tecnología híbrida dual-fuel para camiones de 18 a 25 toneladas “presenta sus mayores beneficios haciendo uso de baterías de pequeña capacidad (hasta 10 kWh). El uso de paquetes de baterías más grandes incrementaría sustancialmente el coste total del vehículo. Y si bien es verdad que éste se podría reducir con la previsible caída de precio de la tecnología litio-ion durante los próximos años, hasta entonces, será difícil ver camiones puramente eléctricos producidos a gran escala”.

Volvo Group Trucks Technology y Aramco Overseas Company

Junto al CMT-Motores Térmicos de la UPV, en el estudio han participado también las empresas Volvo Group Trucks Technology (Francia) y Aramco Overseas Company (Francia), con las que CMT-Motores Térmicos de la UPV trabaja desde hace más de una década.

Compártelo en las redes
Share on Facebook
Facebook
Tweet about this on Twitter
Twitter

Dejar respuesta

Please enter your comment!
Please enter your name here